0=2(7x^2-24x-112)

Simple and best practice solution for 0=2(7x^2-24x-112) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 0=2(7x^2-24x-112) equation:



0=2(7x^2-24x-112)
We move all terms to the left:
0-(2(7x^2-24x-112))=0
We add all the numbers together, and all the variables
-(2(7x^2-24x-112))=0
We calculate terms in parentheses: -(2(7x^2-24x-112)), so:
2(7x^2-24x-112)
We multiply parentheses
14x^2-48x-224
Back to the equation:
-(14x^2-48x-224)
We get rid of parentheses
-14x^2+48x+224=0
a = -14; b = 48; c = +224;
Δ = b2-4ac
Δ = 482-4·(-14)·224
Δ = 14848
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{14848}=\sqrt{256*58}=\sqrt{256}*\sqrt{58}=16\sqrt{58}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(48)-16\sqrt{58}}{2*-14}=\frac{-48-16\sqrt{58}}{-28} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(48)+16\sqrt{58}}{2*-14}=\frac{-48+16\sqrt{58}}{-28} $

See similar equations:

| -2=-3+v/9 | | 5g+3(-8+2g)=10g | | (8.7)x=1.62 | | 12x-23=x+15 | | x/8.7=1.62 | | (N-3)(2)=(n)(3) | | -11=4-5n | | A-(a×.2)=9.60 | | 4.8x-5.9=37.3 | | 18x=41 | | x2+6x-600=0 | | (3x+8)+(x-6)=40 | | 7x-5=2x+45 | | 1/3+5/12(x)-2=62/3 | | 3-(5x-22)=6(x-3) | | 4x+32=9x-8 | | 12.6+4m=9.6-8m | | -6x-12=6x | | -42k=9k | | q+2=2q | | 3/1=45/x | | 14-9=4x-11 | | 2t+2=4t | | 7b=19b | | 7x2-10=6x2-3x | | (x*5)+(35+x)=385 | | 17x+2=20x-7 | | 8+2a=11+a | | 15x+7=12x+2 | | -1/2x+11=-5 | | -3(w+2)=w(2+6)+7 | | C+7(x)=4x+-11 |

Equations solver categories